

Karst Sinkhole Detecting and Mapping Using Airborne LiDAR

PIs

Su Zhang Earth Data Analysis Center; Department of Civil, Construction, and Environmental Engineering

Shirley Baros Earth Data Analysis Center

Susan Bogus Halter Department of Civil, Construction, and Environmental Engineering

Team Members

Ryan Dow (student) Department of Civil, Construction, and Environmental Engineering

Paul Neville (research staff) Earth Data Analysis Center

Hays Barrett (research staff) Earth Data Analysis Center

PRC Members

Claude Morelli Department of Civil, Construction, and Environmental Engineering

David Hadwiger New Mexico Department of Transportation

Shawn Penman Earth Data Analysis Center

Background

- Sinkholes are natural depressions in the Earth's surface; almost always prone to karst area
- Potential sinkholes vs. collapse sinkholes
- Collapse sinkholes could cause substantial damage to transportation infrastructure assets
- Being able to accurately and rapidly detect and map collapse sinkholes is critical to transportation infrastructure asset management and planning
- Transportation management agencies at all levels dedicate a large amount of time and money to detect and map collapse sinkholes as part of their infrastructure asset management programs

Provided by NCKRI

Current Sinkhole Inspection Methods

- Primarily through area reconnaissance
 - Visual inspection (collapse sinkholes)
 - Instrumental inspection (potential sinkholes)
- Review of maps
 - Topographic maps
 - Contour maps
 - Geologic maps
- Aerial photography and satellite imagery
- Airborne light detection and ranging (LiDAR)

Provided by Gilmore & Associates, Inc.

Provided by Breakings199

Provided by UT Austin

Airborne LiDAR

- LiDAR system attached to a helicopter or aircraft
- LiDAR is a technology that uses light in the form of a pulsed laser to measure distances
- Established method for collecting very accurate elevation data across landscapes
 - Capable of scanning a swath of land covering many miles
 - Day and night data collection
- The resulting data of LiDAR collection are presented in the form of point clouds

Provided by Applied Imagery

Provided by wur.nl

Airborne LiDAR Advantages

- Provides detailed Earth's surface elevation data
 - Highly accurate measurement in X, Y, Z dimensions
 - Allows the examination of the Earth's surface elevation change accurately and rapidly
- Filters to the ground through the vegetation canopy

Provided by USGS

Provided by Caves of South Wales

5

LiDAR Derived Products

- Digital Surface Model (DSM)
- Digital Elevation Model (DEM) or Digital Terrain Model (DTM)

Provided by 3DMetrica

Provided by USNA

Current Airborne LiDAR-based Sinkhole Detection Methods

- Only morphology-based feature extraction
 - Focuses on detecting objects that from a distinct shapetransition in reference to their surroundings
 - Geometrically sinkholes are oval-shaped concave depression
- However, sinkholes have varying sizes, shapes, and appearance under various landforms, and they may not even exist in certain contexts
 - A dry stock pond and detention pond may be false positively detected as a sinkhole
- No focus on context-based feature extraction

Provided by Solid Stock Art

Objectives

- Develop a complete process and toolset for detecting and mapping collapse sinkholes through the use of airborne LiDAR data
 - Morphology-based
 - Context-based
- Identify best practices for the effective implementation of a statewide sinkholes hazard management system (SHMS)
- Develop a guidebook for airborne LiDAR based collapse sinkhole detection and mapping

Context-based Feature Extraction

- Object Based Image Analysis (OBIA)
 - vs. pixel-based image analysis
 - Group image pixels through segmentation (Mean Shift) and then delineate boundary
 - Spectral information (image pixel values)
 - Spatial information (shapes and spatial proximity)

Segmentation

- Region Growing
 - Focuses on finding similar pixels from a seed and neighboring pixels
- Watershed Detection
 - Mostly used for gray-scale images and it treats images like a topographic surface to detect homogeneous pixels to ground them as a watershed
- Mean Shift
 - It is a local homogenization technique that concentrates on damping shading and tonality difference in localized objects to find the clustering of objects
 - It is selected because it is compatible with ArcGIS

Provided by Huang et al.

Context-based Feature Extraction

- User provided contextual information
 - Further filter false positively detected sinkholes
 - Can have as many layers as possible

Context Data	Example Sources	Genera Applications
Shape and Spatial Proximity	LiDAR Derived DEM	Delineate sinkhole boundary
Soil Types	USGS Geological maps	Sinkholes will not occur in certain types of soil such as gypsum-rich soils
Infrastructure Boundary	Infrastructure footprint boundary maps	Remove objects that false positively detected as sinkholes such as stadiums
Vegetation	USDA National Agricultural Imagery Program (NAIP)	Vegetation located on top of sinkholes appears circular shape
LULC	USGS National Land Cover Database (NLCD) maps	Remove objects that false
Hydrology	USGS National Hydrology Database (NHD)	such as dry stock ponds

Morphology-based Feature Extraction

- Morphometric characteristics
 - Area 🕢
 - Width
 - Length
 - Perimeter
 - Depth
 - Volume
 - Elongatedness

Provided by Karstic Research Lab

Workflow

13

Project Deliverables

- An ArcGIS compatible toolset has been developed based on Object Based Image Analysis (OBIA) techniques
- Best practices for implementing a statewide SHMS have been identified
- A guidebook on the developed toolset has been developed for workforce development and professional training

- Study Area
 - Near Roswell
 - 90 km²

- Overall Level Validation
- Cohen's Kappa coefficient = 0.801

		Ground-Truth Sinkholes		T. 4.1	
		YES		NO	Total
LiDAR Detected	YES	107		19	126
Sinkholes	NO	14		235	249
Total	Total 121			254	375
Cohen's Kappa		Degree of Agreement			
< 0.20		Poor			
0.2 - 0.4		Fair			
0.41 - 0.6		Moderate			
0.61 - 0.8		Good			

Very Good

> 0.80

- Individual Level Validation
- Visual Analysis

- Individual Level Validation
- Statistical Analysis Shapiro-Wilk Normality Test

Dataset	Null Hypothesis	P-value
LiDAR Detected Sinkholes	The distribution of the population is normal	< 0.0001
Ground-Truth Sinkholes	The distribution of the population is normal	< 0.0001

- Individual Level Validation
- Statistical Analysis Nonparametric Test

Test	Null Hypothesis	P-value
Paired Group Test – Wilcoxon Signed Rank	The median difference between airborne LiDAR-based measure and ground-based measure is zero	< 0.0001
Unpaired Group Test – Mann-Whitney U	The distribution pattern (shape and spread) of measurement values for airborne LiDAR-based measure vs. ground-based measure is the same	0.282

- The airborne LiDAR detected sinkholes can be potentially applied to evaluate overall sinkhole risks for rapid, high-level information checks
- At the individual level, airborne LiDAR detected sinkholes and groundtruth sinkholes do not have statistically similar morphometric measurements
- Higher vertical accuracy airborne LiDAR data will provide more accurate detection results

Tools Availability (<u>https://github.com/edac/Sinkhole-Extraction-Tool</u>)

💭 Why GitHub? 🗸 Enterprise Explo	ore \vee Marketplace Pricing \vee		Sign in Sign up
code Code Code Code Code Code Code Code C	0 Projects 0 de Insights	⊘ Watch	1 🖈 Star 0 🛛 🖁 Fork 0
GitHub	Join GitHub tod. Is home to over 36 million developers w review code, manage projects, and build Sign up	ay rking together to host and software together.	Dismiss
ArcMap Sinkhole Extraction Tool	anch 🔊 0 releases	1 contributor	aja Mit
Branch: master - New pull request			Find File Clone or download -
hbarrett Updated Readme			Latest commit 6942322 on Mar 13
E LICENSE	Initi	al commit	2 months ago
README.md	Upd	ated Readme	2 months ago
snkholemapper2.5.DEMCreator.pyt.xml	First	commit	2 months ago
 inkholemapper2.5.5inkhole_Extractor.pyExml inkholemapper2.6.5inkhole_Extractor.pyExml 	Fight Fight	commit	2 months ago
is snkholemapper2.5.pyt.xml	First	commit	2 months ago 2 months ago
BB README.md			
EDAC Sinkhole To This tool is designed to provide the allows for either LIDAR LAS or DEM 1	user with an ability to do a prelimin. tiles to be used as input. Also the us	ary reconnaissance for possible er can define the minimum an	e sinkholes. This tool Id maximum size of

Tools Availability (https://github.com/edac/Sinkhole-Extraction-Tool)

Tools Users Guide Availability

24

ID	Stakeholder Name	Stakeholder Type	Category(ies)
a	NMDOT District 2	State DOTs	Ally; Early potential adopters; Sponsors of research and T2; Deployment team
b	NCKRI	Research Institute	Ally; Late potential adopters
c	UNM EDAC	Research Institute	Problem owners; Researchers and developers; Deployment team
d	UNM CCEE	Research Institute	Problem owners; Researchers and developers; Deployment team
e	NMDOT Research Bureau	State DOTs	Ally; Sponsors of research and T2
f	Region 6 State DOTs	State DOTs	Late potential adopters
g	Other state DOTs	State DOTs	Late potential adopters

High Alignment	Inform and raise interest	Engage closely and ally
Low Alignment	Minor (minimal effort)	Negotiate, lobby, or neutralize
	Low Interest	High Interest

ID	Engagement Activity [Approx. Date]	Stakeholder(s) Involved	Info Communicated <u>to</u> Stakeholder	Info Gathered <u>from</u> Stakeholder	Resources Required
1	Stakeholder Webinar #1 [December 2018]	All, but specifically A, C, D, E, F, and H	Introduce project (objectives, tasks, timeline, significant results, and key outcomes)	Obtain input for: [1] other potential adopters [2] candidate case studies to conduct	Webinar platform; point of contacts in each stakeholder; dedicated time for webinar coordination
2	Stakeholder Webinar #2 [February 2019]	All, but specifically A, C, D, E, F, and H	Introduce the developed GIS tools for creating preliminary sinkhole maps	Obtain input for: [1] other potential adopters [2] general feedback	Webinar platform; point of contacts in each stakeholder; dedicated time for webinar coordination
3	Research Report [March 2019]	All	Research summary	Obtain input for: [1] general feedback [2] method improvement	Time for manuscript
4	Stakeholder Webinar #3 [April 2019]	All, but specifically A, C, D, E, F, and H	Introduce the developed GIS tools for creating final sinkhole maps	Obtain input for: [1] other potential adopters [2] general feedback	Webinar platform; point of contacts in each stakeholder; dedicated time for webinar coordination
5	Stakeholder Webinar #4 [June 2019]	All, but specifically A, C, D, E, F, and H	Introduce the validation results of final sinkhole maps and the case studies results	Obtain input for: [1] other potential adopters [2] general feedback	Webinar platform; point of contacts in each stakeholder; dedicated time for webinar coordination
6	Stakeholder Webinar #5 [August 2019]	All, but specifically A, C, D, E, F, and H	Introduce the case studies results	Obtain input for: [1] other potential adopters [2] general feedback	Webinar platform; point of contacts in each stakeholder; dedicated time for webinar coordination
7	Journal Publication [August 2019]	All, but specifically A, C, D, E, F, and H	Project summary	Obtain input for: [1] general feedback [2] method improvement	Time for manuscript development
8	TRB 2020 Meeting Publications/Presentations [January 2020]	A, C, D, E, F, G, H	Updating research communities on project	Obtain input for: [1] general feedback [2] other potential adopters	Travel funds; time for manuscript development

ID	Stakeholder Name	Barriers to Technology Adoption	Potential (or Actual) Actions to Address the Barriers
а	NCKRI	 Late potential adopters need the technology to be "validated" and "proven to work" before taking steps or investments toward adoption May focus on aspects that are different from engineering 	 [1] Frequently highlight more involved adopters and their benefits of using the developed tools [2] Provide a plan to enable them to share their "success stories" when they adopt the tools
b	Region 6 state DOTs	 [1] Late potential adopters need the technology to be "validated" and "proven to work" before taking steps or investments toward adoption [2] May not have a point of contact for technology adoption 	 [1] Frequently highlight more involved adopters and their benefits of using the developed tools [2] Leverage the TranSET network to identify key point of contact
с	Other state DOTs	 [1] Late potential adopters need the technology to be "validated" and "proven to work" before taking steps or investments toward adoption [2] May not have imperative sinkhole issues and may not have a point of contact for technology adoption 	 [1] Frequently highlight more involved adopters and their benefits of using the developed tools [2] Leverage the TranSET network to identify key point of contact

PI Questionnaire and Self-TRL Score

- The tools developed from this research project will be provided to the state DOTs or transportation agencies for free access and usage. Commercialization and licensing of research outputs will be not pursued
- ArcGIS software package (10.3 and newer) needs to be readily available
- End users need to have intermediate GIS skills

Categories	TRL Score	Description	To achieve the given TRL score, you must answer "Yes" to <u>EVERY</u> question at that level.
Basic Research	1	Basic principles & research	 Do basic scientific principles support the concept of the project outcome? Has the outcome development methodology or approach been developed?
	2	Application formulated	 Are potential framework applications identified? Are outcome components and the user at least partly described? Do preliminary analyses or experiments confirm that the application might meet the user need?
	3	Proof of concept	 Are outcome performance metrics established? Is outcome feasibility fully established? Do experiments or modeling and simulation validate performance predictions of outcome capability? Does the outcome address a need or introduce an innovation in the field of transportation?
Applied Research	4	Components validated in laboratory environment	Are end user requirements documented? Were individual components (if any) successfully tested in a laboratory environment (a fully controlled test environment)?
	5	Integrated components demonstrated in a laboratory environment	 Are target and minimum operational/functional requirements developed? Is component integration demonstrated in a laboratory environment (i.e. fully controlled setting)?
Development	6	Field or full-scale test demonstrated in relevant environment	 Is the operational/functional environment fully known (i.e. user community, physical environment, and input data characteristics as appropriate)? Was the field or the full-scale experiment tested in a realistic environment outside the laboratory (i.e. relevant environment)? Does the field or full-scale experiment satisfy all operational/functional requirements when confronted with realistic troblems?
	7	Fully integrated outcome demonstrated in operational environment	Are available components ready to be fully integrated in the final outcome? Is the fully integrated outcome demonstrated in an operational environment (i.e. real-world conditions, including the user community)? If applicable, are all outcome components tested individually under expected conditions?
	8	Outcome proven in operational environment	 Is the outcome proven in an operational environment (i.e. meet target performance measures)? Was a rigorous test and evaluation process completed successfully? Does the outcome meet its stated purpose and functionality as developed?
Implementation	9	Outcome refined & adopted	 Is the outcome deployed in its intended operational environment? Is information about the outcome disseminated to the user community? Is the outcome adopted by the user community?

Tran-SET

Transportation Consortium of South-Central States

Solving Emerging Transportation Resiliency, Sustainability, and Economic Challenges through the Use of Innovative Materials and Construction Methods: From Research to Implementation

