TERRAIN ANALYSIS

Su Zhang, Ph.D., GISP

TERRAIN

- What is terrain
 - Also known as relief
 - It refers to the vertical and horizontal dimensions of land surface
 - To describe the terrain of the land, factors such as the slope, elevation, and orientation of the land are used
- Terrain matters
 - Terrain determines the natural availability and location of surface water and therefore soil moisture and drainage
 - Terrain influences the location and nature of transportation networks
 - Terrain determines its suitability for human settlement and the cost and methods of construction

TERRAIN ANALYSIS

- Terrain analysis can be defined as the analysis and interpretation of topographic features (e.g., elevation, contour, slope, aspect, flow direction) through geographic information systems (GIS)
- Terrain analysis employs elevation data, usually in conjunction with other geospatial information, to describe the landscape, for basic visualization, modeling, or to support decision making
- Terrain analysis ranges from largely qualitative, typified by military terrain analysis, to sophisticated numerical computations in geomorphology
- Example Applications
 - Soil Mapping
 - Hydrologic Mapping
 - Wildlife/Habitat Modeling

usgs.com

ELEVATION DATA

- Provide height information above mean sea level (MSL) for every place in the world
 - An MSL measurement refers to the altitude or height above the average height of the oceans and seas
 - Positive values indicate above mean sea level and negative indicate below mean sea level
 - Above ground level (AGL) aviation
- Types of elevation data
 - Rectangular raster grid DEM, DSM, DTM
 - Triangulated Irregular Network (TIN)
 - Contours

spatialsource.com.au

planet.botany.uwc<u>.ac.za/</u>

pinterest.com

ELEVATION DATA

- DEM General term for digital topographic data in various formats
- DTM bare-earth DEM
- DSM captures the natural and built features on the Earth's surface

gisgeography.com

satpalda.com

DSM VS DTM VS AERIAL PHOTOS

spatialsource.com.au

TIN

- Triangulated Irregular Network
- A vector-based digital geographic data and are constructed by triangulating a set of vertices (points)
- The edges of TINs form contiguous, nonoverlapping triangular facets and can be used to capture the position of linear features that play an important role in a surface, such as ridgelines or stream courses

desktop.arcgis.com

TIN

- Many methods of interpolation to form these triangles
 - Delaunay Triangulation
 - 3 points form a Delaunay triangle if and only if the circle which passes through them contains no other point
 - Distance ordering
 - Compute the distance between all pairs of points, and sort from shortest to longest
 - ➤ Connect the closest pair of points
 - Connect the next closest pair if the resulting line does not cross earlier lines
 - ➢ Repeat until no further lines can be selected
 - Break lines
 - Contours

docs.qgis.org

xmswiki.com

wikipedia.org

D

docs.autodesk.com

CONTOURS

- Lines of uniform elevation that connect to create a continuous dataset
 - Examples: elevation, temperature (isotherm), precipitation (isohyet)
- The shape and density of contour lines provide information on terrain height and shape

3drshaper.com

site.iugaza.edu.ps

weather.gov

microimages.com

TERRAIN VARIABLES

Variable	Description	Importance
Height	Elevation above base	Temperature, vegetation, visibility
Slope	Rise relative to horizontal distance	Water flow, flooding, erosion, travel cost, construction
Aspect	Downhill direction of steepest slope	Temperature, vegetation, soil characteristics and moisture
Flow length	Longest upstream flow path to a point	Sediment and erosion rates
Profile Curvature	Curvature parallel to slope direction	Erosion, water flow acceleration
Plan curvature	Curvature perpendicular to slope direction	Water flow convergence, soil water, erosion
Visibility	Site obstruction from given viewpoints	Utility location, viewshed preservation

A subset of commonly used terrain varibales. Paul Bolstad, GIS Fundamentals (adapted from Moore et al., 1993)

ESRI TERRAIN DATASET

A TIN based terrain data format

TERRAIN DATASET

- ESRI native format
- A multiresolution, TIN-based surface built from measurements stored as features in a geodatabase
- Typically made from LiDAR, Sonar, and photogrammetric sources (aerial triangulation, structure-from-motion, stereo images)
- Terrains reside in the geodatabase, inside feature datasets with the features used to construct them
- Terrains have participating feature classes and rules, similar to topologies
- Terrains use pyramids to represent multiple levels of resolution

BENEFITS

- Ability to store and manage vector-based terrain information in the geodatabase
- Scalable and seamless; collections can reach into the billions of points
- Terrain pyramids enable appropriate subsets, based on area of interest and accuracy requirements, to be retrieved quickly through optimized database queries
- The ability to be modified over time
- Edits are local and do not require rebuilding the entire model
- A capable platform for DEM production
- High-quality interpolation designed to handle a wide variety of input data types

BENEFITS (CONTD.)

- In ArcSDE, terrains can be versioned; as with other data types, versioning offers a powerful approach for editing data and deriving what-if scenarios in multiuser environments
- Terrain layer for interactive display and query of the terrain surface; the layer's surface representation updates itself automatically as you pan and zoom around the display; TINs are built on the fly based on measurements and level of detail (LOD) information stored in the geodatabase
- Supported geometry: Points, Multipoints, Lines, Polygons
- Supported data types: Stereo-captured photogrammetric features, Bare earth LiDAR, First/All return Lidar, Sonar data

esri.com

TERRAIN DATASET

esri.com

pro.arcgis.com

3D ANALYST

Data visualization and analysis in 3D

3D ANALYST EXTENSION

- The ArcGIS 3D Analyst extension provides tools for creating, visualizing, and analyzing GIS data in a 3D context
- 3D Analyst tools provide the ability to create and analyze surface data represented in raster, terrain, triangulated irregular network (TIN), and LAS dataset formats
 - Conversion
 - Functional Surface
 - Triangulated Surface
 - Visibility
 - More...

- 💼 3D Analyst Tools
- 👂 🚋 3D Features
- Intersections
- 👂 🚋 3D Proximity
- Area and Volume
- 🕨 🚋 Point Cloud
- 🕨 🚉 Raster
- Statistics
- 🖻 🚋 Terrain Dataset
- 🕨 🚋 TIN Dataset
- 🖻 🚋 Triangulated Surface
- 🕨 🚉 Visibility

Esri Extensions Name Licensed Expires 3D Analyst 7/16/2023 Yes Aviation Airports 7/16/2023 Yes Aviation Charting Yes 7/16/2023 Bathymetry Yes 7/16/2023 Business Analyst Yes 7/16/2023 Data Interoperability Yes 7/16/2023 Data Reviewer Yes 7/16/2023 Defense Mapping Yes 7/16/2023 Geostatistical Analyst Yes 7/16/2023

GLOBAL SCENE VS. LOCAL SCENE

- Global Scene allows to view GIS data on a 3D globe
- Local Scene allows to view GIS data within a 3D planimetric view

GLOBAL SCENE

LOCAL SCENE

EXPLORATORY 3D ANALYSIS

pro.arcgis.com

3D DATA

- Features
 - 3D point underground subway stations, locations of aircraft,...
 - 3D polyline underground transportation lines, aircraft flight paths,...
 - 3D polygon building footprints, street curbs,...
 - Multipatches a GIS object that stores a collection of patches to represent the boundary of a 3D object as a single row in a database; Patches store texture, color, transparency, and geometric information representing parts of a feature
- Surfaces
 - Raster
 - TIN
 - Terrain dataset
 - LAS dataset

desktop.arcgis.com

Model the flow of water across a surface

WATERSHED AND DRAINAGE

- Watershed
 - An area that contributes flow to a point on the landscape
 - The uphill area that drains to any point on a landscape is the watershed for that point
 - Also called as basins, catchments, …
- Drainage network
 - A set of cells through which surface water flows
 - Based on the flow direction surface
 - Streams, creeks, and rivers occur where flow directions converge

desktop.arcgis.com

HYDROLOGIC UNIT CODE (HUC)

- A hierarchical hydrologic unit code (HUC) consisting of 2 additional digits for each level in the hydrologic unit system is used to identify any hydrologic area
- Each hydrologic unit is assigned a 2digit to 12-digit number that uniquely identifies each of the six levels of classification within six two-digit fields. An example is shown below using hydrologic unit code 180902030303

- 🔨 Sink
- 🔨 Snap Pour Point
- 🗐 Storage Capacity
- 🔨 Stream Link
- 🔨 Stream Order

🔨 Stream to Feature

Watershed

- Fill
- Flow Direction
- Flow Accumulation
- Flow Length
- Flow Distance
- Basin
- Watershed

Fills sinks in a surface raster to remove small imperfections in the data

Creates a raster of flow direction from each cell to its downslope neighbor, or neighbors, using D8, Multiple Flow Direction (MFD) or D-Infinity (DINF) methods

78	72	69	71	58	49		2	2	2	4	4	8
74	67	56	49	46	50		2	2	2	4	4	8
69	53	44	37	38	48	[1	1	2	4	8	4
64	58	55	22	31	24	-	128	128	1	2	4	8
68	61	47	21	16	19		2	2	1	4	4	4
74	53	34	12	11	12		1	1	1	1	4	16
E	Elevation surface Flow direction											
	32 64 128 164 12 164 12 Direction coding The coding of the direction of flow											

FLOW DIRECTION

Calculated by estimating the aspect

	-											
77	71	68	70	57	48		1	1	1	1	↓	1
74	66	56	48	45	50		1	1	1	Ļ	1	1
68	52	43	36	37	47		\rightarrow	\rightarrow	X	Ļ	1	↓
63	57	54	21	30	23		1	1	1	4	Ļ	1
67	60	46	20	15	19		1	1	1	1	1	1
73	52	33	11	12	13		\rightarrow	\rightarrow	\rightarrow	Ļ	-	~
(a) Elevation					(b) Flow direction							

FLOW ACCUMULATION

Creates a raster of accumulated flow into each cell; a weight factor can optionally be applied

Archarjee and Sarma 2011

FLOW LENGTH

Calculates the upstream or downstream distance, or weighted distance, along the flow path for each cell

gis.stackexchange.com

FLOW DISTANCE

Computes, for each cell, the horizontal or vertical component of downslope distance, following the flow path(s), to cell(s) on a stream into which they flow

Geoproces	sing	~ Ŧ >
	Flow Distance	(
Parameters	Environments	?
* Input stream	nraster	
* Input surface	e raster	
* Output raste	er	
Input flow d	irection raster	
		i i i i i i i i i i i i i i i i i i i
Distance typ	e	
Vertical		~
Input flow d	irection type	
D8		~
Statistics typ	be	
Minimum		~

BASIN

Creates a raster delineating all drainage basins

desktop.arcgis.com

WATERSHED

Determines the contributing area above a set of cells in a raster

